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A B S T R A C T   

The numerical modelling of Coriolis Mass flow Meter (CFM) is essential for predicting its outcomes accurately in 
terms of sensitivity as well as exact mass flow rates. In the majority of mathematical and numerical modelling 
concerning the flexible structures, the authors neglect the dimensional and shape variation of the structure due to 
self-weight. The shell based on the First-order shear deformation shell theory (FSDST) is preferred in modelling 
shells compared to the beam model. The current work includes numerical modelling of CFM using eight noded 
isoparametric shell elements and twenty noded Acoustic fluid elements. The fluid energy describes as the po-
tential, and the dynamic boundary condition is assumed utilising the displacement of structure and potential of 
the fluid. The fluid dynamic equation combining suitable numerical model, fluid-structure interaction module 
and cross-correlation technique helps to achieve the numerical modelling of CFM. The numerical model of CFM 
utilises the Newmark Beta method of numerical integration, and the response of two equidistant locations from 
the point of tube excitation is acquired. For the flexible tube conveying fluid, there exists sagging of tube due to 
the weight of tube and fluid. The Coriolis force and the external excitation force cause the fluid conveying tube to 
bend and twist, and as a result, the velocity responses picked from two equidistant points shows a difference in 
phase. The effect of sagging leads to a lower phase shift and time decay, and hence the sensitivity of the CFM is 
low for low pre-stretched flexible tubes. The pre-stretching of flexible tubes reduces the effect of sagging, fa-
cilitates to regain the cylindrical shape of the tube and increases the sensitivity of CFM. The result reveals that the 
shell element along with the three-dimensional acoustic fluid element provides the most accurate numerical 
model for the CFM and the change in sensitivity, as well as the change in mass flow measurements, can 
appropriately be analysed with the help of this numerical model. The amplitude of the velocity of the structure, 
measured from the two equidistant points, shows a difference. The severe variation in amplitude of velocity 
measured from two points is an implication of the out of plane deflection of the tube. For a CFM made up of metal 
tubes, the amplitude of velocity variation is minimal and ignored by the authors.   

1. Introduction 

The Coriolis mass flow meter (CFM) consists of an externally 
vibrating fluid conveying tube, two motion detectors located equidistant 
from the excitation point and a data acquisition system. The CFM is a 
globally accepted, precise device that measures the actual mass flow rate 
and density of the fluid. Within a short duration, CFM gains tremendous 
applications in industries as an accurate mass flow measurement device 
as well as calibration flow meter in oil and gas, textile and synthetic, 

food industries, medical and pharmaceutical sectors. CFM offers include 
high accuracy in flow measurements, a broad range of operation, and 
excellent repeatability. As the fluid conveying tube is excited at its 
fundamental frequency, the fluid experiences directional change for the 
motion, which results in Coriolis forces. The Coriolis force tends to 
deform the fluid conveying tube, which results in the same magnitude of 
force at the inlet and exit regions of the tube. But the direction of Coriolis 
force at the inlet and exit regions opposes each other, which imparts a 
phase shift between the responses. 

The phase shift can be measured using two motion detectors placed 

* Corresponding author. 
E-mail address: jayaraj@cet.ac.in (J. Kochupillai).  

Contents lists available at ScienceDirect 

Flow Measurement and Instrumentation 

journal homepage: www.elsevier.com/locate/flowmeasinst 

https://doi.org/10.1016/j.flowmeasinst.2021.101947 
Received 15 May 2020; Received in revised form 10 February 2021; Accepted 15 April 2021   

mailto:jayaraj@cet.ac.in
www.sciencedirect.com/science/journal/09555986
https://www.elsevier.com/locate/flowmeasinst
https://doi.org/10.1016/j.flowmeasinst.2021.101947
https://doi.org/10.1016/j.flowmeasinst.2021.101947
https://doi.org/10.1016/j.flowmeasinst.2021.101947
http://crossmark.crossref.org/dialog/?doi=10.1016/j.flowmeasinst.2021.101947&domain=pdf


Flow Measurement and Instrumentation 79 (2021) 101947

2

at two sections. The mass flow rate of fluid conveying through the tube is 
proportional to the phase shift or time decay. The ratio of the phase shift 
to the actual fluid flow rate furnishes the sensitivity of the CFM. The 
sensitivity of the flow meter is a critical performance parameter for the 
selection of flow measuring devices. The CFM offers desirable sensitivity 
with high accuracies. The sensitivity of CFM is usually dependent on the 
extent of deflection and the twist of the tube. Usually, the metal tube 
needs more energy to deflect, hence to reduce the energy requirement 
they are excited at the tube’s natural frequencies. Increasing the Coriolis 
forces in the tube enhances the sensitivity of CFM. Sensitivity improves 
for the CFM if the tubes of different geometry like u-shape, Ω-shape, and 
Δ-shape replace the straight tube. 

The numerical modelling of CFM helps to identify the operating 
conditions and sensitivity. The CFMs need accurate numerical modelling 
as the tube oscillations, and the resultant deformations, as well as the 
twists in the tube, are tiny in magnitude. The conventional modelling of 
CFMs was beam model with the fluid as an added mass to the structure. 
The literature confines the shell modelling of CFMs as the interaction of 
fluid, and the conveying tube finds difficulty in mathematical, analytical 
and numerical modelling. The shell model takes care of rotary inertia as 
well as the shear deformations; hence the twist happened due to the 
Coriolis forces can be represented accurately using Shell models. The 
availability of proper mathematical and numerical models for the fluid- 
structure interaction problems and flow measuring devices are limited. 
The vibrational behaviour of cylindrical shells conveying fluids sub-
jected to steady loads, pulsatile loads, shock or other transient loadings 
is significant in the design point of view. 

A thorough literature review on CFM reveals that the conventional 
technique to model CFM tube is using Beam or Shell elements. Beam 
model is a simple model usually adopted in solving fluid-structure 
interaction problems, where the fluid models as an added mass to the 
structure. Beam theory gives reasonable accuracy in predicting funda-
mental frequencies and responses of CFM, which uses flexible tubes [1]. 
By the implementation of shear deformations and rotary inertia effects, 
the Timoshenko beams provide more accurate results in comparison 
with the Euler-Bernoulli beam model for the fundamental frequencies 
and responses of CFM. 

Beam model for tubes conveying fluids (with the fluid as an added 

mass to the structure) is not solely desirable for the flexible structures as 
the pressure acting on the inner tube surface alters the dimensions of the 
tube in all directions due to Poisson coupling. An attempt to the nu-
merical and analytical modelling of CFMs is prevalent in recent days 
since the fabrication; characterization and prototype development of 
these devices are very expensive and time-consuming. The analytical 
modelling of CFM’s is usually limited to straight cylindrical geometries 
which usually ignore most of the actual physical effects such as sagging 
of tube and non-homogeneity in tube material. The finite element 
analysis is a powerful tool which can handle complex geometries. 

Several researchers have proposed the numerical formulation of fluid 
flow problems, which includes fluid-structure interaction (FSI) and flow- 
induced vibrations. But the finite element analyses of shells conveying 
fluids are restricted. Paidoussis has performed a detailed investigation of 
FSI in pipes in his two volumes of the book [2,3]. Ming Ji et al. [4] 
proposed a mathematical model to examine the vibrational character-
istics of the fluid-filled thick cylindrical shells. The FSDST is used to 
develop the governing equations, and the numerical model extends 
better accuracy than other numerical models for clamped-clamped pipes 
with fluid. This work does not involve any flow through pipes. Kochu-
pillai et al. [5] developed a semi analytical-numerical model for elastic 
shells conveying fluids. The displacement-based axisymmetric eight 
noded shell elements have opted for structural modelling for viscoelastic 
pipes. They use a velocity-potential based fluid model; use Bernoulli’s 
equation for deriving the fluid pressure acting on the pipe walls. Amabili 
et al. [6], Tubaldi et al. [7], Zhang et al. [8] modelled thin circular cy-
lindrical shells conveying fluids. They found that the Surface stresses, 
flexibility in boundary conditions, the thickness of the thin-walled shell, 
initial tension, hydrostatic pressure and flow velocity has a strong in-
fluence in the vibrational characteristics of the shell. Sadowski et al. [9] 
and Keramat et al. [10] modelled thick fluid conveying pipes using the 
shell model. They pointed out that the thick shell treatment gives ac-
curate results for buckling moment under uniform bending for very thick 
and long cylinders. 

Ruoff et al. [11] presented an accurate numerical model using 
Timoshenko beam theory and a model reduction technique for CFM 
made up of a pipe with arbitrary geometry. They have evaluated the 
influence of natural frequencies and Coriolis excitation mode on the flow 

Nomenclature 

βξ, βη Rotation vectors along ξ and η directions 
εξ, εη, εz Normal Strain along ξ, η and z directions 
γξη, γηz, γzξ Shear strains 
γ0ξη, γ0ηz, γ0zξ Shell Mid plane Shear strains 
Kξ,Kη Radius of curvatures along ξ and η directions 
σξ,ση Normal Stresses in local coordinate system 
τξητηz, τzξ Shear Stresses in local coordinate system 
A,B Lame’s Parameters 
E Young’s Modulus 
Ds Constitutive matrix for shell 
G Shear Modulus 
υ Poisson’s ratio 
u0, v0,w0 Mid surface displacements of the shell 
dei Generalized Global displacement vector 
Ni Shape function for the ith node 
ξ, η, ζ Local Coordinates for the shell 
σij Shell element stress 
εij Shell element strain 
Bs Strain Displacement Matrix of the shell 
Ks Shell Stiffness Matrix 
Kg Geometric Stiffness Matrix 
Ke Kinetic Energy of the shell 

m Mass of the shell 
U Displacement vector of the shell 
H Transformation Matrix 
Φ Velocity Potential 
c Velocity of Sound 
Uz Mean axial flow velocity 
Vz Velocity of the shell along the radial direction 
Vr Radial Velocity of fluid 
Ps Stagnation Pressure 
Pp Perturbation Pressure 
Nfi Shape function of the fluid ithnode 
Ω1, Ω2 Frequencies corresponding to the flanks of the peak 

response 
Ωn Peak response frequency 
ηd Damping ratio 
ρs Density of Silicone tube 
ρf Density of conveying fluid 
n Time step 
β,γ Numerical integration parameters 
P Effective force 
K̂ Effective stiffness 
Δt Time step  

R.K. Krishna et al.                                                                                                                                                                                                                              



Flow Measurement and Instrumentation 79 (2021) 101947

3

characteristics. Even though this work includes the analysis of CFM 
made up of tubes with pre-defined curvature, the authors ignore the 
curvature of the tube due to sagging. Samer et al. [12] studied the 
vibrational characteristics of a CFM made up of a circular tube. They 
used the dynamic stiffness matrix method to model the tube, and the 
effect of natural frequency, flow velocities, axial forces and tube re-
sponses on the dynamic characteristics of CFM is studied. Wang et al. 
[13] demonstrated an analytical technique to evaluate the sensitivity of 
the CFM using the reciprocity principle, and this model is capable of 
determining the sensitivity of flowmeter with any shape. They have 
optimized the locations of sensors attached to the U tube CFM. 

Juel et al. [14] investigated the effects of support conditions, 
non-uniformity in the mass and stiffness of tube, non-proportional 
damping, non-linearity and flow imperfections on the phase shift of 
CFM. The governing equations for the pipes conveying are derived using 
Hamilton’s Principle. Li et al. [15] suggested some advanced techniques 
in signal processing, such as sophisticated bandpass filtering and com-
plex notch filtering. They have found that the new methods give slight 
delay, significant noise elimination and high accuracies for CFMs. Li 
et al. [16] described a new technique to evaluate the frequency and time 
decay of the sensor’s output signals of CFM based on Lagrangian inter-
polation function. They proposed various signal processing techniques 
to boost the accuracy and computation time of CFM. Felix et al. [17] 
show a prism signal processing technique which facilitates fast-tracking 
of input and output signals of the CFM. They found that more accurate 
measurements result using a higher frequency resonant flow tube. Satish 
et al. [18] conducted the experimentations of several U tube configu-
rations of CFM. The found that the locations of sensors, drive fre-
quencies, length to diameter ratio, torsional stiffness influences the 
design parameters of CFM. Ridder et al. [19] showed the impact of 
external disturbances on the dynamic responses of CFM for low flow 
rates. They develop a numerical model from the patented design, and 
the characteristic is experimentally validated. They utilize a pre-defined 
vibration excitation for estimating the error factor. 

Mole et al. [20] introduced a numerical model for the analysis of 
Coriolis mass flow meter using coupled finite volume method for the 
fluid analysis and finite element method for the structural analysis. They 
explore the influence of vibrational mode shapes of fluid conveying 
tubes and velocity profile effects on the sensitivity of flow measure-
ments. They found that the there is a noticeable reduction in the sensi-
tivity for straight tube Coriolis mass flow meter, when the flow changes 
from turbulent to laminar. Kutin and Bajsic [21] develops a shell Coriolis 
mass flow meter using Flugge’s shell theory for developing governing 
equations for the structure and potential flow for the fluid. They 
compared the results of shell and beam mode Coriolis mass flow meter 
and found that the shell Coriolis mass flow meter possess higher sensi-
tivity in flow measurements. Bobovnik et al. [22] did coupled finite 
element and finite volume analysis on the Coriolis mass flow meter made 
up of deformable shells and found that the deviation in natural fre-
quencies predicted by shell model and Euler-Bernoulli beam model is 
very small while the phase difference predicted by Euler-Bernoulli beam 
model for shorter tube is high compared to the shell model. The Timo-
shenko beam model as well as Shell model gives more accurate phase 
differences compared to the Euler-Bernoulli beam model. Monga et al. 
[23] generate a micro-CFM made up of SU-8. The CFM is made up of 
rectangular channels and actuated by Lorentz forces. The Su-8 sensors 
are not superior to other sensors like silicone Coriolis flow meter due to 
the high damping ratios, low accuracy, lower mechanical strength and 
lower mechanical rigidity. 

Binulal et al. [1,24] use the Principle of virtual work to develop a 
numerical model of a CFM made up of a flexible tube. They developed a 
CFM using straight Polyurethane tube and found that as the flow ve-
locity rises, the time lag due to phase shift also increases. Clark et al. 
[25] investigated the flow tube dynamic response using finite element 
simulations and verified the results experimentally. They found that 
quick switching of flow control devices in the tubes results in mechanical 

vibrations and errors in measurements. Clark et al. [26,27], Svete et al. 
[28] and Cheesewright et al. [29] found that the flow pulsations in the 
CFM can cause the tube to excite due to ‘internal’ vibrations in addition 
to the drive motor excitation and the tube experiences an additional 
vibration excitation at the beat frequency. Sometimes the beat can be 
insignificant in measurements but imparts some errors in flow mea-
surements in the presence of flow pulsations. Smith et al. [30] and 
Enoksson et al. [31] develop a micro Coriolis flowmeter made up of 
silicone tube. The fluid conveying microtube is excited electrostatically, 
and these micro CFMs is used to measure the flow rates of the range 
0–0.5 g/s. The comprehensive review of the literature reveals that the 
Coriolis mass flow meter made up of flexible tubes is very limited, and 
the authors neglect the effect of sagging for the flexible tubes conveying 
fluid. 

1.1. The novelty of this paper lies in  

(a) The application of the numerical model of the flexible tube 
conveying fluid in a Coriolis mass flow meter.  

(b) The numerical and experimental investigation of the influence of 
the beat phenomenon due to sagging in the dynamic character-
istics of Coriolis mass flow meter.  

(c) The identification of the difference in the meter sensitivities 
concerning the straight cylindrical tube and actual sagged flex-
ible tube.  

(d) The estimation of the causes and remedies for the non-linearities 
in the calibration curves of Coriolis mass flow meter. 

2. Theory 

2.1. Governing equations for modelling of shells [5,32,33–38] 

In the Mindlin shell theory, the mid plane displacements are defined 
in terms of the shell thickness and the rotations of a plane cross-section 
are not related to the derivatives of the transverse displacements. The 
normal strains acting on the plane parallel to the middle surface are 
negligible compared with the other strain components. Fig. 1 shows the 
geometry of mindlin shell. 

Assumptions made in the derivation of shell theory are.  

(a) The shell material is isotropic.  
(b) Deflections are small compared with shell thickness.  
(c) Neglect the shell gravity forces.  
(d) The change in the thickness of the shell due to pre-stretching is 

neglected. 

Fig. 1. Geometry of shell.  

R.K. Krishna et al.                                                                                                                                                                                                                              



Flow Measurement and Instrumentation 79 (2021) 101947

4

(e) Normals to the mid surface strains remain straight during 
deformation but not normal to the surface. 

The displacements of a point in the shell at a distance ‘z’ above the 
centroidal plane can be given as 

u(ξ, η, z)= u0(ξ, η) + z βx (ξ, η) (1)  

v(ξ, η, z) = v0(ξ, η) − z βy (ξ, η) (2)  

w(ξ, η)=w0(ξ, η) (3) 

The strains at any point can be written as: 

εξ =
1

(

1 + z
Rξ

) (ε0ξ + zKξ) (4)  

εη =
1

(

1 + z
Rη

) (ε0η + zKη) (5)  

γξη =
1

(

1 + z
Rξ

) (γ0ξη + zKξη) (6)  

γηz =
1

(

1 + z
Rη

)

(

γ0ξη + z
βη

Rη

)

(7)  

γzξ =
1

(

1 + z
Rξ

)

(

γ0zξ + z
βξ

Rξ

)

(8)  

where the mid surface strains can be written in terms of mid surface 
displacements, radius of. 

The radius of curvatures and the twist changes can be evaluated as 

Kξ =
1
A

∂βξ

∂ξ
+

βη

AB
∂A
∂η (9)  

Kη =
1
B

∂βη

∂η +
βξ

AB
∂B
∂ξ

(10)  

Kξη =
1
A

∂βη

∂ξ
−

βξ

AB
∂A
∂η (11) 

The lames parameters of the shell element in the local curvilinear 
coordinate system (ξ, η) can be expressed in terms of the Cartesian co-
ordinates (x, y, z) as 

A2 =

(
∂x
∂ξ

)2

+

(
∂y
∂ξ

)2

+

(
∂z
∂ξ

)2

(12)  

B2 =

(
∂x
∂η

)2

+

(
∂y
∂η

)2

+

(
∂z
∂η

)2

(13) 

Using the relations, we can write the strain displacement relation in 
the form 

{ε}= [Bs]{Ue} (14)  

where [Bs] is the shell strain displacement matrix. 
The elemental stress can be evaluated using the stress strain rela-

tionship as 

{σ}= [Ds]{ε} (15)  

where the constitutive relation matrix [Ds] for an isotropic material is 
given as 

[Ds] =
E

(1 + ϑ)(1 − 2ϑ)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ϑ
ϑ
ϑ
0
0
0

ϑ
1 − ϑ
ϑ
0
0
0

ϑ
ϑ
1 − ϑ
0
0
0

0

0
0

1 − 2ϑ
2

0

0

0

0
0

0

1 − 2ϑ
2

0

0

0
0

0

0

1 − 2ϑ
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

2.2. Finite element formulation of shells 

The pipe structure is discretized into many number eight noded 
Mindlin shell elements with different orientations. Fig. 2 shows the ge-
ometry of eight noded isoparametric shell element. The plane stress 
component in the normal direction of the shell structure is assumed to be 
zero. Six degrees of freedoms have been defined for each elemental 
node, three translations, and three rotations in the global XYZ direction. 
The rotation along the z-axis is commonly known as the drilling degree 
of freedom, which is added to the node to bypass the ill condition of the 
assembled global stiffness matrix [36,38]. The generalized global 
displacement vector for an ‘ith’ node of 8 noded shell element can be 
expressed as 

Uei =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ui
Vi
Wi
θxi
θyi
θzi

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(17)  

Fig. 2. Eight noded Mindlin shell element.  
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The displacement at any point can be expressed as 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ui
Vi
Wi
θxi
θyi
θzi

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

{
N1 0 N2 0….. N8
0 N1 0 N2….. N8

}

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1
V1
.

.

θy8
θz8

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(18)  

where N1 to N8 represents the shape functions which are defined as 

For  corner  nodes  Ni =
1
4
(1+ ξaξ)(1+ ηaη)(ξaξ+ ηaη − 1) (19)  

For  mid − size  nodes  ξa = 0; Ni =
1
2
(
1 − ξ2)(1 − ηaη) (20)  

For  mid − size  nodes  ηa = 0; Ni =
1
2
(1 − ξaξ)

(
1 − η2) (21) 

Using the shell strain displacement matrix the Stiffness matrix of the 
shell can be evaluated as 

Ks =ΔBsDsBT
s dv (22) 

The integration of the above equation is carried out using Gauss 
Quadrature technique of numerical integration. 

2.3. Geometric stiffness updation to incorporate pre-stretching [39] 

The pre-stretching can cause the stiffness to increase along the lon-
gitudinal direction of the shell. This increase in stiffness can be evalu-
ated by conducting static analysis of the shell. The nodal displacements 
can be used to evaluate the elemental strains and stresses acting on the 
Mindlin shell. 

The geometric stiffness Kg can be found out using the equation 

Kg =

∫∫

BT
mσijBmdA (23)  

where 

σij =

⎡

⎣
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎤

⎦ (24) 

The geometric stiffness is added to the membrane stiffness to get the 
total longitudinal stiffness. Hence the total stiffness of the shell can be 
written as K = Ks + Kg 

2.4. Mindlin shell mass matrix [40] 

To obtain the mass matrix for curved Mindlin shell, we adopt the 
same technique used for deriving stiffness matrix. The mass matrix of the 
two-dimensional solid element is used for accounting the in-plane 
loading effect, and the 2D plate element formulation is applied for 
deriving the bending effect. 

From the relation of Kinetic energy of shells, we can derive the mass 
matrix of the shell as 

The  kinetic  energy  of  shell  Ke=
1
2

∫

U̇T mU̇dV (25) 

Hence the mass matrix can be obtained from the shell shape func-
tions as 

m= ΔρNT NdV (26) 

Numerical integration using Gauss Quadrature is used to evaluate 
the integral. 

2.5. Transformation Matrix [41] 

The stiffness and mass matrices of shell elements are evaluated with 
reference to the natural coordinate system, and it has to be transformed 
into the global coordinate system using the transformation matrix. 

The nodal displacements and rotations of the shell can be expressed 
using transformation matrix as 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1
d2
d3
d4
d5
d6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

[
H 0
0 H

]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1
v1
w1
θ1x
θ1y
θ1z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(27) 

The components of this transformation matrix are the cosines of the 
angles between the three-elemental local axes. 
⎧
⎨

⎩

ξ
η
ζ

⎫
⎬

⎭
=

⎧
⎨

⎩

lξ mξ nξ
lη mη nη
lζ mζ nζ

⎫
⎬

⎭

⎧
⎨

⎩

x
y
z

⎫
⎬

⎭
(28)  

H =

⎧
⎨

⎩

lξ mξ nξ
lη mη nη
lζ mζ nζ

⎫
⎬

⎭
(29)  

2.6. Finite element modelling of acoustic fluid element [5,32,42,43] 

Twenty noded isoparametric elements are used in the finite element 
formulation of the fluid domain. The geometry of fluid element is shown 
in Fig. 3. The wave equation describes the phenomenon of flow as the 
energy is propagated by the wave. The potential is taken as the nodal 
DOF for the element formulation of the wave equation. Nodal DOF for 
the acoustic fluid element is taken as three. 

The assumptions made in developing the finite element equations for 
the fluid region.  

(1) The fluid flow is due to the potential and plug flow.  
(2) Flow is compressible in nature, irrotational, isentropic, and 

inviscid.  
(3) The fluid pressure always acts normal to the shell wall,  
(4) Flow separation, or cavitation does not take place. 

Fig. 3. Geometry of Twenty noded fluid element.  
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The velocity potential satisfies the wave equation as given below: 

∇2φ −
1

C2

(
∂
∂t
+Uz

∂
∂z

)

φ= 0 (30) 

The radial and axial velocity of flow can be expressed as 

Vr =
∂φ
∂r

, Vz = Uz +
∂φ
∂z

(31) 

To satisfy the impermeability between fluid and structure, we as-
sume the radial fluid velocity to be equal to the shell velocity in the same 
direction. This boundary condition assures proper connection between 
fluid and shell. 

Therefore the velocity of the shell can be given as 

Vr =

(
∂φ
∂r

)

r=R
=

∂w
∂t

+ Uz
∂w
∂x

(32) 

The Bernoulli’s equation helps to obtain the pressure exerting on the 
shell surface which states as 

∂φ
∂t

+
1
2
V2 +

Pp

ρ =
Ps

ρ (33)  

where 

V2 =V2
z + V2

θ + V2
r (34) 

and 

Pp =P + p (35) 

The higher order terms in V2 are ignored, and hence we get V2 ≅

U2
z + 2Uz

∂φ
∂x 

Pp = − ρ
(

∂φ
∂t

+ Uz
∂φ
∂x

)

(36) 

The finite element equations of the fluid flow (wave equation) can be 
formulated using the Galerkin weighted residual method with the po-
tential as the weighting function. The equation can be written as 
∫

V

NT
f

(

∇2φ −
1

C2

(
∂
∂t
+ Uz

∂
∂z

)2

φ
)

dV = 0 (37)  

∫

S

NT
f ∇φ.ndS −

∫

V

∇NT
f ∇φdV −

1
C2

∫

V

NT
f φ̈dV −

2Uz

C2

∫

V

NT
f

∂2φ
∂z∂t

dV

−
U2

z

C2

∫

V

NT
f

∂2φ
∂z2 dV

= 0 (38)  

where the fluid shape functions Nf is given by 

For  the  corner  nodes  Ni =
1
8
(1+ ξiξ)(1+ ηiη)(1+ ςiς)(ξiξ+ ηiη+ ςiς − 2)

(39) 

For mid side edge nodes ξi = 0; ηi = +1 ; ςi = +1 

Ni =
1
4
(
1 − ξ2)(1+ ηiη)(1+ ςiς) (40) 

The first term of the equation is rewritten by applying the boundary 
conditions as 
∫

S

NT
f ∇φ.ndS=

∫

NT
f NdS

{

U̇e

}

+ Uz

∫

NT
f

∂N
∂z

dS{Ue} (41)  

where Ns represents the shell shape function component along Z direc-
tion, and ‘n’ is the normal unit vector to the shell. 

The finite element equation of fluid domain considering the pressure 

acting on the surface can be expressed as 
∫

S

Ns
T ρf

(
∂φ
∂t

+ Uz
∂φ
∂z

)

dS= ρf

∫

S

Ns
T Nf dS

{
φ̇e

}
+ ρf Uz

∫

S

Ns
T ∂Nf

∂z
dS{φe}

(42) 

Combining both the equations, the complete fluid-structure inter-
action equation for the structure and acoustic fluid can be expressed as 
[

Muu
s 0

0 Gφφ
f

]{
ü
φ̈

}

+

[
0 Cuφ

fs

− Cφu
fs − UzGφφ

fs

]{
u̇
φ̇

}

+

[
Kuu

s UxKuφ
fs

− UzKφu
fs Hφφ

f − U2
z Iφφ

f

]{
u
φ

}

= 0 (43)  

where 

Elemental mass matrix,mes = ρs

∫

NT
s Ns dV  

Structural mass matrix, Muu
s =

∑
mes  

Elemental fluid compression energy,Gφφ
ef =

1
c2

∫

NT
f Nf dV  

Structural Fluid compression energy, Gφφ
f =

∑
Gφφ

ef  

Elemental  Fluid  Structure  interaction  coupling  term,  Cuφ
efs = ρf

∫

NT
s Nf dS  

Fluid Structure interaction coupling term, Cuφ
fs =

∑
Cuφ

efs  

Elemental  Fluid  Structure  interaction  coupling  term,  Cφu
efs =

∫

NT
f Ns dS  

Fluid Structure interaction coupling term,Cφu
fs =

∑
Cφu

efs  

Elemental Coriolis energy of fluid, Cφφ
ef =

2Uz

c2

∫

NT
f

∂Nf

∂x
dV  

Coriolis energy of Fluid, Cφφ
f =

∑
Cφφ

ef  

Elemental Stiffness matrix of shell,Kuu
es =

∫

BT DB dV  

Structural Stiffness matrix,Kuu
s =

∑
Kuu

es  

Elemental Stiffness coupling due to flow, Kuφ
efs = ρf

∫

NT
s
∂Nf

∂x
dS  

Stiffness coupling due to flow, Kuφ
fs =

∑
Kuφ

efs  

Elemental Stiffness coupling due to flow, Kφu
efs = ρf

∫

NT
f
∂Ns

∂x
dS  

Stiffness coupling due to flow, Kφu
fs =

∑
Kφu

efs  

Elemental Kinetic energy of fluid, Hφφ
ef =

∫

∇NT
f ∇Nf dV  

Kinetic energy of fluid, Hφφ
f =

∑
Hφφ

ef  

Elemental Centrifugal Energy of fluid, Iφφ
ef =

U2
z

c2

∫ ∂NT
f

∂x
∂Nf

∂x
dV 
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Centrifugal Energy of fluid, Iφφ
f =

∑
Iφφ

ef 

The general fluid-structure interaction equation is then assembled 
using the structural stiffness matrices, structural mass matrices, fluid 
energy matrices and the coupling matrices. This general fluid-structure 
interaction equation is generally an Eigen value problem; hence the 
solution gives Eigen values and Eigen vectors. These Eigen values give 
the natural frequencies of the system, while Eigen vector helps to plot 
the corresponding mode shapes. 

2.7. Numerical integration using Newmark- β method [44] 

The solution for transient fluid-structure interaction problem is ob-
tained using the Newmark-β method of numerical integration. Fig. 4 
represents the flow chart for the numerical analysis of Coriolis mass flow 
meter. The nodal displacement, velocity and acceleration of the struc-
ture are computed from the incremental equations of equilibrium. The 
technique involves step-by-step integration in which the solution for 
nodal variables is obtained from one-time step to the next time step. For 
every small time step (denoted as Δt), the equation of motion for time 
step tn+1 in terms of nodal displacement, velocity and acceleration can 
be found out using the following relations. 

xn+1 = xn +Δtẋn +(0.5 − β)(Δt)2ẍn + β(Δt)2ẍn+1 (44)  

ẋn+1 = ẋn +(1 − γ)Δtẍn + γΔtẍn+1 (45) 

For γ = 0.5, we get the relations for velocity and acceleration as 

ẋn+1 = ẋn +
(Δt

2

))(

ẍn + ẍn+1

)

(46)  

ẍn+1 =
1
m

[

Pn+1 − cẋn+1 − kxn+1

]

(47) 

The parameters β and γ are selected suitably based on the accuracy 
and stability criteria. For each time step, the values of β and γ are taken 
as β ≥ 0.5and γ≥ 0.25(0.5+ β) 2. 

The equation of motion, at any time, t+1, can be specified as: 

[M]

{

ẍt+1

}

+ [C]

{

ẋt+1

}

+ [K]{xt+1} = {Pn+1} (48) 

The iteration starts with an assumed values for the initial displace-
ment and velocity at time, t = 0. Using the structural, fluidic and 
interaction modules, the mass matrix [M], the stiffness matrix, [K] and 
damping matrix, [C] are computed as 

[M] =

[
Muu

s 0
0 Gφφ

f

]

[C] =

[
0 Cuφ

fs

− Cφu
fs − UzGφφ

fs

]

[K] =

[
Kuu

s UxKuφ
fs

− UzKφu
fs Hφφ

f − U2
z Iφφ

f

]

The constants used in the integration are found out using the re-
lations 

a0 =
1

β(Δt)2; a1 =
γ

βΔt
; a2 =

1
βΔt

; a3 =
1

2β
− 1  

a4 =
γ
β
− 1; a5 =

Δt
2

[γ
β
− 2

]
; a6 =Δt(1 − γ); a7 = γΔt 

For every time step the integration equation is solved to find the 
effective stiffness matrix and hence the corresponding effective force, 
nodal velocity and acceleration are found out. The initial acceleration is 
evaluated from equation (48) for a time step at t = n. Assume a value of 
acceleration at time step n+1. Solve for new acceleration at time ‘n+1’ 
using equation (48). We define suitable convergence criteria to compare 
the acceleration at time steps ‘n+1’ and ‘n’. If the required condition is 
not met, the acceleration at time step ‘n+1’ will get revised. 

The effective stiffness matrix can be given as, 
[

K̂
]
= [K] + a0[M] + a1[C] (49) 

And the effective force,  

Fig. 4. Flow chart describing the numerical analysis.  

{

P̂n+1

}

={Pn+1}+ [M]

(

a0{xn}+ a2

{

ẋn

}

+ a3

{

ẍn

})

+ [C]

(

a1{xn}+ a4

{

ẋn

}

+ a5

{

ẍn

}

(50)   
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The nodal displacement can be found out from the effective force as 
[

K̂
]
{xn+1}=

{

P̂n+1

}

(51) 

The acceleration and velocity can be found as 

Acceleration,
{

ẍn+1

}

= a0({xn+1} − {xn}) − a2

{

ẋn

}

− a3

{

ẍn

}

(52)  

Velocity
{

ẋn+1

}

=

{

ẋn

}

+ a6

{

ẍn

}

+ a7

{

ẍn+1

}

(53) 

The sinusoidal excitation (with constant frequency) is given at a node 
located at the center of fluid conveying tube in the finite element model 
of Coriolis mass flow meter. The nodal velocity responses of two equi-
distance nodes from the point of excitation are acquired. The responses 
show a phase shift, which is proportional to the mass flow rate of 
conveying fluid. 

3. Experimentation 

Designed an experimental setup for investigating the vibrational 
performance of silicone tubes with the steady-state flow condition, and 
Fig. 5 shows the layout of the experimental setup. Care is taken to avoid 
resonance by keeping the combined frequency of frame and test struc-
ture over 120 Hz. The experiments were carried out in a closed-circuit 
system with recirculating water. The test setup consists of clamped- 
clamped horizontally placed silicone tube (with arrangement for pre- 
stretching), three water storage tanks, controllers, actuators and 
response sensors. Fig. 6 shows the experimentation setup used for the 
analysis of Coriolis mass flow meter. Two storage tanks with inter-
connecting pipes and float valve are used to maintain constant head over 
the silicone tube and to reduce the undulations in fluid flow. The fluid 
passing the test section is collected at tank 3 and it is given back to tank 1 
using a pump. The silicone rubber tube is excited at its fundamental 
frequency using the electromagnetic shaker. The properties of silicone 
rubber tube are given in Table 1. A function generator (Tektronix 
AFG3022B) generates the input sine wave signal for electromagnetic 
shaker and the generated signal is amplified with the help of a power 
amplifier (Sentek Dynamics LA 300, rated output-300 VA). 

A stinger rod is attached on the electromagnetic shaker and force 
transducer (Dytran, 22.5 mV/N) is attached at the free end of the stinger, 
the center of the fluid conveying tube is fixed firmly to the force trans-
ducer. The response of the fluid conveying tube is examined using the 
roving output method, where the tube is always excited at its centre. An 
ultrasonic flow meter (Portaflow 300, Micronics Ltd, with the velocity 
limit of 0.05–15 m/s) is used to measure the flow velocity. The dynamic 
responses of two equidistant points from the excitation are acquired 
using the laser Doppler vibrometer (Polytec IVS400). The impedance 
head signal (excitation force) and the response (tube vibration velocity 
from vibrometer) were gathered employing the Dynamic Signal 
Analyzer (DSA). ME’scope VES analysis software is used for the pro-
cessing of input and output signals. 

Generally, in Coriolis mass flow meter the tube is continuously 
excited at its fundamental frequency to minimise the energy required for 

Fig. 5. Layout of the experimentation setup.  

Fig. 6. Experimentation setup arrangement.  

Table 1 
Parameters of silicone tube.  

Tube material Silicone rubber 

Tube dimensions Inner diameter = 0.006 m 
Outer diameter = 0.009 m 

Material properties of silicone polymer Modulus of Elasticity, 
E = 5 MPa 
Material density, 
ρ = 1100 kg/m3 

End conditions of tube Both ends clamped  
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excitation. Thus the excitation at fundamental frequency will cause 
resonance, which leads to increase in amplitude of vibration [45]. Since 
the tube is flexible, the oscillations may become uncontrollable after 
some time. The amplitude of vibration is limited by means of Notching 
technique using a Vibration controller (Rula Technologies, RL-C21). 
Here the limit of vibration is assigned as ± 3 mm. RL-C21 helps in 
attaining is a closed loop control system, which limits the oscillations to 
the prescribed values. The level of vibrations is monitored using the 
responses received from the laser Doppler vibrometer and based on the 
predefined limit of vibration; the vibration controller will control the 
amplitude of vibration through the power amplifier and hence the drive 
amplitude will be reduced during the resonance condition. 

Different combinations of parameters such as the number of samples, 
sampling frequency, excitation duration, and hold time of the excitation 
waveform are tried out, and the values for the signal processing are 
found out. The sampling rate is taken as 8192 samples for the time 
duration of 6.55 s. The excitation signal application time is taken as 7 s 
and a pause time of 2 s. The Hanning window is used for signal condi-
tioning [46,47]. 

The fluid conveying tube is excited at its centres using a sinusoidal 
signal of constant frequency. The signal is generated using an arbitrary 
function generator, and then the signal is amplified using power 
amplifier. The frequency of excitation remains the same, and the 
response from two equi-distance point of excitation is obtained with the 
help of laser Doppler vibrometer. The time lag can be obtained from the 
temporal shift measured along the time axis, between the zero crossing 
points of the time-response curves. A Matlab program is developed to 
identify the zero crossing points of the velocity curves. 

4. Results and discussion 

4.1. Numerical validation of program with results available in literature 
[48] 

The Mindlin shell finite element model for tube conveying fluid is 
validated, employing the results presented by Païdoussis [48]. He 
examined the flow-induced vibrations and instabilities of cylindrical 
structures conveying incompressible, isentropic, and inviscid fluid. 
Fig. 7 shows the variation of the dimensionless flow velocity, u versus 
the dimensionless natural frequency ω/ωo for the clamped-clamped 
pipes with β as 0.1. Here β represents the mass ratio (the ratio of the 
fluid mass to the sum of structural and the fluid masses), ω is the fre-

quency of the structure, ωo is 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EI/

(m + M)L4
√

and u is 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

EI/ML2

)√

Uz 

where Uz is the flow velocity, m is mass per unit length of pipe, M is the 
mass per unit length of fluid and L is the length of pipe. For the zero 
dimensionless flow velocity of the clamped-clamped tube, the first two 
fundamental dimensionless natural frequencies are found to be 22.37 Hz 
and 61.68 Hz. As the velocity of fluid rises, the dimensionless frequency 
declines, and at a velocity of 2π, the first fundamental mode frequency 
vanishes. For a non-dimensional flow velocity of 8.99, the second 

Fig. 7. Comparison of the MATLAB program with the results of Païdoussis.  

Table 2 
First fundamental frequency of 36 cm long empty tube under different pre- 
stretches.  

Sl 
no 

Length of Tube Experimental 
frequency (Hz) 

Numerical 
frequency (Hz) 

Difference 
(%) 

1 32.4 cm + 3.6 
cm (Pre Stretch) 

24.3 24.416 0.47 

2 30.6 cm + 5.4 
cm (Pre Stretch) 

29.3 29.436 0.46 

3 28.8 cm + 7.2 
cm (Pre Stretch) 

30.1 30.229 0.42  

Fig. 8. Modes of Vibration in Shells tubes conveying fluid.  

Fig. 9. Natural frequency Vs axial load for a 36 cm long tube.  
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fundamental mode frequency also vanishes. From Fig. 7, it is clear that 
the results obtained from the present formulation agree with the results 
of Païdoussis. 

4.2. Influence of pre-stretch in the natural frequency of flexible tube 

The influence of pre-stretch on the fundamental frequency of the 
shell (empty tube) is identified numerically and validated with experi-
ments. The flexible silicone tube with original length of 36 cm is ana-
lysed numerically for different pre-stretches. Table 2 shows the 
comparison of the first fundamental frequency of the silicone tube 
evaluated experimentally and numerically. The difference in the first 
fundamental frequency for a 36 cm long silicone tube found out 
numerically and experimentally is less than 1%. 

The change of natural frequency with the pre-stretch for a 36 cm long 
empty tube is identified numerically. The mode shapes are plotted in the 
Matlab to identify the fundamental modes of vibration. The different 
modes of vibration are shown in Fig. 8. Fig. 9 displays the change in 
natural frequency corresponding to the pre-stretching for the shell in the 
absence of fluid. Initially, the change in natural frequency due to pre- 
stretching is more, and later the difference reduces. This shows a sta-
bilization effect after some pre-stretching. This effect is due to the fact 
that elastomers like silicone rubber tubes are composed of cross-linked 

molecular chains that are highly twisted, kinked, and coiled. The mo-
lecular chains of these silicone rubber polymers partially uncoil when 
the tube is stretched along its length direction. Hence the geometric 
stiffness of the silicon tube gets increased [49]. 

First Bending Second Bending Third Bending. 
Breathing Mode First Circumferential mode Second Circumferential 

mode. 

4.3Validation of numerical program 

The Matlab program developed for CFM analysis is validated using 
the numerical and experimental results available in the literature. 
Fig. 10 (a) shows the geometry for the numerical analysis and fig 10 (b) 
shows the comparison of the results from the current shell formulation 
and the results presented by Binulal et al. [1]. A U- tube CFM is 
considered for the analysis and the modelling of structure is made using 
Timoshenko Beam elements. The tube material used for the analysis is 
PVC with density as 1440 kg/m3 and modulus of Elasticity as 3.3 GPa. 
The internal diameter and external diameter is taken as 0.019 m and 
0.016 m respectively. The length of pipe is 0.55 m and the distance of 

Fig. 10. (a) Geometry used by Binulal et al. [1] (b) Validation of Program with numerical results of Binulal et al. [1] (c) Validation of Program with experimental 
results of Sharma et al. [18] (d)Validation of Program with Shell model proposed by Kutin et al. [21]. 

Table 3 
Properties of U tube and conveying fluid [18].  

Length of tube 0.15 m 

Distance between sensors 0.075 m 
Inner radius of pipe 10 mm 
Pipe Thickness 0.5 mm 
Young’s Modulus of pipe 110 GPa 
Poisson’s ratio 0.3 
Density of Fluid 1000 kg/m3 

Density of pipe 4500 kg/m3 

Boundary conditions Both ends clamped  

Table 4 
Properties of Straight tube [21].  

Tube material Copper 

Length of tube 0.2 m 
Distance between two limbs 0.5 m 
Internal diameter of tube 10.9 mm 
Outer diameter of tube 12.7 mm 
Young’s Modulus of Copper 110 GPa 
Poisson’s ratio 0.3 
Sensor location (from base) 7.5 cm 
Working fluid Water 
Density of Fluid 1000 kg/m3 

Boundary conditions Both ends are fixed 
Drive frequency 35 Hz  
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separation is 1.1 m. The tube is excited at a frequency of 14.06 Hz. The 
fluid is modelled as an added mass to the structure and Poisson coupling 
helps to model the interaction between fluid and structure. The graph 
shows that the proposed shell based CFM gives a good match with the 
results presented by Binulal et al. 

The numerical program using shell elements is then validated using 
the experimental results available in the literature of Sharma et al. [18]. 
A copper U tube CFM is considered for the analysis. The properties of U 
tube CFM as well as conveying fluid and the excitation frequency of the 
CFM are given in Table 3. The maximum difference in the time lag found 
using present numerical formulation and the results given by S C Sharma 
is found to be 8.81%. Fig. 10(c) shows the comparison which reveals 
that the result obtained from the numerical code agrees with the 
experimental results shown by S C Sharma. The numerical program is 
also validated using the shell model proposed by Kutin et al. [21] for a 
straight circular cylindrical shell clamped at both ends conveying 
incompressible fluid. The properties of straight tube Coriolis mass flow 
meter used for the validation is given in table 4. The maximum differ-
ence in the time lag found out using the present shell formulation and 
the results presented by Kutin et al. is 0.32%. Fig. 10 (d) shows that the 
result from the numerical program agrees with the result presented by 
Kutin et al. for the shell Coriolis mass flow meter. 

4.4. Experimental and numerical investigation of the changes in natural 
frequency of silicone tube 

Estimation of the excitation frequency of CFM is essential [50] even 
if the flow measuring tube is a metal tube. Generally, the tube is excited 
at its fundamental frequency to minimise the energy required for exci-
tation. Hence the influence of pre-stretch on the fundamental frequency 
of the silicone tube is studied numerically and experimentally. Table 1 
presents the parameters utilised for the numerical analysis of the natural 
frequency of the flexible tube. Table 5 displays the fundamental natural 
frequency of the silicone tube for an initial length of 25 cm. The tube is 
excited in X-Z plane, while responses along both the X-Z as well as X–Y 
plane are studied. Graphs display numerous undulations for the coher-
ence function in the range of 20–25 Hz. 

Fig. 11 (a) presents the Frequency response function, and the 
coherence function for the tube along the X-Z plane (horizontal plane). 

The first fundamental frequency (First bending mode) along X-Z plane 
(Horizontal plane) is observed as 21.6 Hz, while the tube experiences the 
same first bending mode of vibration along X–Y plane (Vertical plane) at 
a frequency of 25.8 Hz. Hence there is a difference in the first funda-
mental natural frequency of the tube measured along X-Z as well as X–Y 
plane. This difference in natural frequency exhibits the random vibra-
tions due to the beat phenomenon occurred in a sagged tube, as reported 
by Krishna et al. [49]. The sagging of flexible tube results in the tran-
sition of the circularity in the cross-section to some uncertain shape like 
teardrop shape. The pre-stretching reduces sagging and thus, the dif-
ference in frequency observed in various planes of vibration also de-
creases. The difference in natural frequency seems to be 1.7 Hz for 10% 
pre-stretched tube while the difference in frequency reduces to 0.1 Hz 
for 20% pre-stretched tube. Table 5 shows the difference in first 
fundamental frequency found along X–Y plane and X-Z plane for 25 cm 
long tube containing water. 

The numerical analysis of a cylindrical silicone tube of 25 cm initial 
length shows the same rising trend for the natural frequency while pre- 
stretching. The result is given in table 6. The Numerical static analysis is 
initially conducted with the pre-defined pre-stretched length to recog-
nise the pre-stretch load required in the natural frequency analysis of the 
flexible tube. The geometric stiffness of the structure is found out based 
on the pre-stretched load and it gets added with the initial stiffness of the 
tube. The numerical analysis does not take care of the shape change due 
to sagging; instead, it treats the silicone tube as a merely cylindrical shell 
carrying fluid. Hence the change in natural frequency of the tube along 
various planes of vibration cannot be recognised in the numerical 
analysis. 

Table 5 
Experimental evaluation of First fundamental Frequency of 25 cm long tube with 
fluid.  

Sl no Pre-Stretch (%) First Natural Frequency 
(Hz) 

Difference in frequency (Hz) 

X-Z Plane X–Y Plane 

1 5 21.6 25.8 4.2 
2 10 24.3 26.0 1.7 
3 15 25.8 26.3 0.5 
4 20 26.8 26.7 0.1  

Fig. 11. FRF and Coherence plot for 5% Pre-stretched tube (a) FRF and Coherence along X-Z Plane (b) FRF along X–Y Plane.  

Table 6 
Numerical evaluation of First fundamental frequency of 25 cm (initial length) 
tube.  

Sl 
No 

Length of tube 
(cm) 

Pre-Stretch load for 
Geometric stiffness (N) 

First Natural 
Frequency (Hz) 

1 25 + 1.25 cm Pre 
stretch 

6.5 24.16 

2 25 + 2.5 cm Pre 
stretch 

15.3 25.12 

3 25 + 3.75 cm Pre 
stretch 

18.5 26.14 

4 25 + 5 cm Pre 
stretch 

24.6 26.82  

Fig. 12. Meshed model obtained from MATLAB.  
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For low pre-stretched tubes, the numerical natural frequency found 
to be different from the experimental natural frequency of flexible sili-
cone tube. The numerical natural frequency corresponding to 20% pre- 
stretched flexible tube yields a value agreeing to the experimental nat-
ural frequency. This study shows that the pre-stretching promotes the 
tube to regain its cylindrical shape and reduces the change in natural 
frequency as well as the beat phenomenon. 

4.5. Experimental investigation on the time lag of straight tube CFM 

The response of the CFM made up of flexible tubes is examined using 
a silicone tube of 25 cm initial length. The tube is excited at its centre, 
and the responses of two equidistant points from the excitation point are 
acquired. A MATLAB programme helps to identify the zero-crossing 
point of the response signals. Fig. 12 shows the meshed model used in 
the Matlab program to find the charecterestics of CFM. A sinusiodal 
excitation force is applied at node number 113, while the responces are 
picked from nodes 87 and 139. The no-flow condition observes no phase 
difference, while there is a phase shift when the fluid flows through the 
tube. Here the phase shift gives an idea of the mass flow rate, while the 
velocity response shows a difference in the amplitude of structure 

Fig. 13. (a) 10% pre-stretch – No flow (b) 10% -flow velocity 2.5 m/s (Excitation frequency – 25.1 Hz).  

Fig. 14. (a) 15% Pre-stretch – No flow (b) 15% -flow velocity − 2.5 m/s (Excitation frequency – 26.1 Hz).  

Fig. 15. (a) 20% Pre-stretch – No flow (b) 20% -flow velocity − 2.5 m/s (Excitation frequency – 26.9 Hz).  

Fig. 16. Velocity of structure due to Coriolis forces and excitation. (W repre-
sents weight of fluid and shell, VFC – Velocity of Structure due to Coriolis forces, 
VFS – Velocity of Structure due to Excitation force). 
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velocity between the two points. The difference in structural velocity is 
found by Binulal et al. [24] and Stephanie Enz [51] but overlooked 
further analysis on the velocity change, as they concentrated on the 
phase shift alone. The change in structural velocity depends on the 
pre-stretching of the tube. The amplitude change of velocity reduces 
concerning the pre-stretching of the silicone tube. 

Fig. 13 (a) shows the cross-correlation of the Coriolis flowmeter 
made up of a silicone tube of length 25 cm and a pre-stretch of 10% of its 
original length. The tube carrying fluid (no flow) shows no phase shift, 
while the tube conveying fluid with a flow velocity (2.5 m/s) shows a 
phase shift in the velocity responses picked from two points. Fig. 13(b) 
shows the response of the CFM with a flow velocity of 2.5 m/s. The 
responses show that the amplitude of velocities picked from the re-
sponses shows a difference. The Pre-stretching reduces the change in 
amplitude of structural velocity. The responses of CFM using the flexible 
tube with 15% and 20% pre-stretches are shown in Figs. 14 and 15 
respectively. The change in amplitude of structural velocity happens 
typically due to the combined effect of Coriolis force and velocity of the 
structure due to excitation. 

Fig. 16 shows the effect of excitation, Coriolis force and structural 
velocity on the flexible tube with and without fluid flow. As the tube is 

excited at its centre, the Coriolis force acting on one side of the tube 
along with the velocity of the tube produces an inward deflection of the 
tube (Section A-A). In contrast, the response of the second point (Section 
B–B), which includes the Coriolis force in the opposite direction and the 
tube velocity, results in an outward movement of the tube. This change 
in the direction of Coriolis force induces a difference in the response 
amplitude of structural velocity. For isotropic materials with a higher 
modulus of elasticity, the change in amplitude of structural velocity is 
not very significant compared to the change in amplitude of velocity 
observed in the silicone rubber tube. The flexible tube suffers from the 
effect of sagging, results in more twisting of the tube and hence the 
phase shift differs. Hence it can be inferred that the effect of change in 
amplitude of the structural velocity gets reflected in the phase shift 
between two points of the structure. The effect prevails more if the 
structure is flexible. The 20% pre-stretched tube shows a very little 
difference in the amplitude of structural velocities picked from the two 
equidistant points. The tube oscillations become smoother compared to 
the oscillations at lower pre-stretches. 

The experimental research on the low pre-stretched tube reveals that 
there is a non-linearity in the calibration curve while the tube is oper-
ating at Coriolis frequency in the beat frequency region of the flexible 

Fig. 17. Experimental Time lag for 25 cm long tube with (a) 10% pre-stretch (b) 15% pre-stretch(c) 20% (d) 25%.  

Fig. 18. Cross correlation for silicone tube 10% pre-stretch (a) No Flow (b) Flow velocity of 2.5 m/s.  
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tube. Fig. 17 (a)–(d) describes the experimental time lag observed due to 
the phase shift in CFM made up of flexible silicone tubes. The 10% pre- 
stretched tube has got the first fundamental frequency along the hori-
zontal as well as vertical plane as 24.3 Hz and 26 Hz respectively. Hence 
while the tube is excited at a frequency which is in between 24.3 Hz and 
26 Hz, the tube follows a plane for vibration, which may not be the plane 
of excitation. Hence a nonlinear calibration curve can be observed for 
the CFM if it is excited in the beat frequency region. This non-linearity in 
the calibration curve reflects in the sensitivity of the Coriolis flowmeter. 

Hence, as the flow velocity increases, the sensitivity declines if the meter 
is operating in this beat frequency region. The result shows that as the 
excitation frequency increases the sensitivity first decreases, and later it 
develops. If the tube is excited at the frequency beyond the frequency 
range of 24.3 Hz and 26 Hz shows a linear trend for the calibration 
curve. 

Similarly, the extent of non-linearity of the calibration curve for the 
CFM using flexible tubes reduces in the beat frequency range as the tube 
undergoes pre-stretching. This effect is because the difference in first 

Fig. 19. Actual outer surface image of 5% Pre-stretched tube (a) Major Diameter (b) Minor Diameter.  

Fig. 20. Actual outer surface image of Silicone tube (a) 10% Pre-stretch (b) 15% Pre-stretch.  

Fig. 21. Actual outer surface image of Silicone tube (a) 20% Pre-stretch (b) 25% Pre-stretch.  

Fig. 22. Numerical analysis with actual shape of 10% pre-stretched silicone tube (a) No fluid flow (b) Flow velocity of 2.5 m/s.  
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fundamental frequency in two perpendicular planes reduces to 0.1 Hz as 
the tube is pre-stretched to 20% of its initial length. Hence the beat 
frequency of 0.1 Hz for a 20% pre-stretched tube means the tube be-
haves like a straight cylindrical structure; hence the tube offers a con-
stant sensitive CFM made up of flexible tube. 

4.6. Numerical analysis of 10% pre-stretched silicone tube 

Fig. 18 (a) and (b) presents the numerical analysis of 10% pre- 
stretched tube with a circular cross-section. Fig. 18 (a) shows the re-
sponses from two points without any fluid flow, while 18 (b) shows the 
phase shift for a flow velocity of 2.5 m/s. There is no phase shift or 
amplitude of velocity variation for the stationery fluid-carrying tube, 
while the fluid conveying tube shows a phase shift. The amplitude of 
velocity from two points differs by a small value. Hence, these results 
show that the difference in amplitude of the velocity picked from two 
equidistant points predominates if the numerical analysis incorporates 
the effect of sagging. 

4.7. Numerical analysis based on actual dimensions of silicone tube 

The difference in sensitivity of the CFM made up of silicone tubes is 
due to the effect of sagging. The controlled excitation along either 
horizontal or vertical plane did not retain the tube vibrations in the 
plane of excitation. Hence the tube vibrates in a plane which may not be 
purely vertical or horizontal, rather would be some inclined plane. Also, 
the actual cross-section of the tube won’t remain circular; rather, it 
seems to be in the shape of the teardrop, which leads to the tube oscil-
lations in the apparent plane. The Laser scanning technique described by 
Krishna et al. [49] helps to identify the actual shape and dimensions of 
the tube. Figs. 19–21 represents the laser-scanned surfaces of tubes with 
5%, 10%, 15%, 20% and 25% pre-stretch of the initial length. The major 
and minor diameter of the 5% pre-stretched tubes is identified as 9.12 
mm and 7.16 mm respectively. Similarly the major and minor diameter 

of the 10% pre-stretched tubes is measured as 9.04 mm and 7.46 mm 
respectively. The major diameter reduces to 8.48 mm and the minor 
diameter increases to 8.22 mm for the 25% pre-stretched tube. 

Fig. 22 (a) and (b) represents the numerical analysis of the CFM with 
10% pre-stretched silicone tube. The results show that the sagging in-
fluences the amplitude of velocity picked from two equidistant points of 
excitation. The cross correlation for no flow condition indicates no phase 
shift, but shows a small change in amplitude of velocity. Hence the 
amplitude of velocity change will be an indication of the effect of sag-
ging. The fluid flow causes a phase shift in the velocity response, while 
the amplitude of velocity also seems to be increasing with the increase of 

Fig. 23. Numerical analysis with actual shape of 20% pre-stretched silicone tube (a) No fluid flow (b) Flow velocity of 2.5 m/s.  

Fig. 24. Experimental and numerical analysis with actual shape and cylindrical shape (a) 10% (b) 15%.  

Fig. 25. Experimental and numerical analysis with actual shape and cylindrical 
shape with 20% pre-stretch. 
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flow velocity. Fig. 23 (a) and (b) represents the cross correlation for the 
CFM with 20% pre-stretched silicone tube. The no flow condition shows 
any phase difference and the amplitude variation is also negligible. The 
difference in amplitude of velocity reduces further compared to 10% 
pre-stretched tube. 

The calibration curve obtained using the actual dimensions of the 
tube are agreeing exactly with the experimental data. Fig. 24 (a) shows 
the calibration curves for 10% pre-stretched tube. The tube analysed 
using cylindrical structure gains a linear calibration curve, while the 
calibration curves are non-linear for the tube with actual dimensions. 
This non-linear calibration curve follows the same trend of results ob-
tained for experimental investigation. Hence it can be inferred that the 
sagging in flexible tube results in non-linearity in calibration curves. 

Fig. 24 (b) represents the calibration curves obtained for the tube 
with 15% pre-stretch. The non-linearity observed for this 15% pre- 
stretched tube is reduced compared to the nonlinearity of 10% pre- 
stretched tube. The calibration curve obtained for a 20% pre-stretched 
tube shows almost a linear variation (Fig. 25). Hence it can be infer-
red that the pre-stretching increases the sensitivity of flexible tube CFM. 

5. Conclusion 

The paper describes the development of a numerical model for CFM 
using eight noded isoparametric shell elements and twenty noded three- 
dimensional acoustic fluid elements. A Matlab program is developed for 
solving the finite element equations for evaluating the characteristics of 
the Coriolis mass flow meter. The Matlab code for the numerical analysis 
of flexible tubes conveying fluid and assessing the characteristics of 
Coriolis mass flow meter is validated with the results available in the 
literature. The experimental calibration curve obtained for the CFM 
made up of flexible silicone tube is not linear; while the numerical 
calibration curve obtained using an initially straight cylindrical flexible 
tube is linear. This non-linearity in the calibration curve is due to the 
beat phenomenon encountered as a result of sagging. The laser scanning 
technique using FARO laser scanner aids to acquire the actual shape and 
dimensions of the sagged flexible tube. The numerical and experimental 
analysis on the Coriolis mass flow meter reveals that the amplitude of 
velocity measured from two equidistant points of the excitation shows 
some difference, and this difference lowers as the tube is pre-stretched. 

The numerical and experimental analysis on the CFM made up of 
flexible tubes points that the change in amplitude of velocities measured 
along the equidistant points of excitation is significant in comparison to 
metal tubes for which it is negligible. Hence for flow measuring devices 
using flexible tubes, never ignore the influence of sagging of tubes as the 
beat phenomenon due to sagging can cause the tube to vibrate in an 
arbitrary plane other than the excitation plane. This beat phenomenon 
results in the variation of the amplitude of tube deflection, which indi-
rectly alters the time lag due to phase shift. The numerical and experi-
mental results show that the pre-stretching reduces the effect of sagging 
and promotes the tube to retrieve its circular cylindrical shape which in 
turn nullifies the change of frequency of vibration in horizontal and 
vertical directions perpendicular to the tube. Hence the pre-stretched 
flexible tubes can be used in flow measuring devices which use vibra-
tional techniques. The shell model developed for the CFM is capable of 
predicting characteristics of the flexible structure, including sagging, 
stretch and beat accurately. For the flexible tube in the present case, a 
20% stretch increases the extent of the linear region in the calibration 
curve. So, one can use a flexible tube with stretch in CFM, which in turn 
reduces the power required for the tube excitation and increases the 
range of operation as well as the sensitivity of the CFM. 
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investigations of flow pulsation effects in Coriolis mass flowmeters, J. Sound Vib. 
352 (2015) 30–45. 

[29] R. Cheesewright, Simon Shaw, Uncertainties associated with finite element 
modelling of Coriolis mass flow meters, Flow Meas. Instrum. 17 (2006) 335–347. 

[30] Richard Smith, Sparks Douglas, Diane Riley, Nader Najafi, A MEMS-based Coriolis 
mass flow sensor for industrial applications, IEEE Trans. Ind. Electron. 56 (4) (April 
2009). 

[31] Peter Enoksson, Goran Stemme and Erik Stemme, ‘A Coriolis mass flow sensor 
structure in silicon’, Proceedings of Ninth International Workshop on Micro 
Electromechanical Systems, 11-15 Feb. 1996, ISBN: 0-7803-2985-6. 

[32] R. Kamal Krishna, Jayaraj Kochupillai, ‘A new formulation for fluid–structure 
interaction in pipes conveying fluids using Mindlin shell element and 3-D acoustic 
fluid element’, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 388. 

[33] M. Amabili, Non-linear vibrations of doubly curved shallow shells, Int. J. Non Lin. 
Mech. 40 (2005) 683–710. 

[34] Klaus-Jurgen Bathe, Finite Element Procedures, Prentice Hall, 1996. ISBN 0-13- 
301458-4. 

[35] Ebrahim Asadi, S. Mohamad, Qatu, ‘Static analysis of thick laminated shells with 
different boundary conditions using GDQ’, Thin-Walled Struct. 51 (2012) 76–81. 

[36] Ana Amaro Maria Augusta Neto, Luis Roseiro, José Cirne, Rogério Leal, 
Engineering Computation of Structures: the Finite Element Method, Springer 
International Publishing Switzerland, 2015. ISBN 978-3-319-17709-0. 

[37] F. Alijani, M. Amabili, K. Karagiozis, F. Bakhtiari-Nejad, Nonlinear vibrations of 
functionally graded doubly curved shallow shells, J. Sound Vib. 330 (2011) 
1432–1454. 

[38] Ansel c. Ugural, Plates and Shells Theory and Analysis, CRC Press Taylor & Francis 
Group, 2018. 

[39] G.R. Liu, S.S. Quek, The Finite Element Method: A Practical Course, Butterworth- 
Heinemann, 2003. ISBN 0 7506 5866 5. 
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